Surface complexation modelling of chromate adsorption on iron oxides

Nefeli Bompoti¹, Maria Chrysochoou¹ and Michael Machesky²

¹Department of Civil and Environmental Engineering University of Connecticut, Storrs, CT USA ²Illinois State Water Survey, Prairie Research Institute, Champaign, IL U.S.A

Chromium (Cr) in the environment

EWG analysis (2009) on in tap water from 35 US cities

Drinking water limit 0.1 ppm (100 ppb) California limit 0.1 ppb

UCONN

Sources of chromium are both natural and anthropogenic.

- Natural geochemical background (ultramafic and untrabasic rocks)
- It is used in the industry for metal plating, alloy production, dyes, paints, wood preservatives, and leather tanning.

Chromium (Cr) speciation in the environment

UCONN

Chromium (Cr)

- exists in the environment mostly in 2 states:
 - 1. trivalent (Cr(III)): essential element of human metabolism
 - 2. hexavalent (Cr(VI) or CrO_4^{2-}): highly mobile, toxic and carcinogenic
- Cr(VI) adsorbs on iron oxide surfaces (≡FeOH) under favorable conditions

Fate and Transport of pollutants in the subsurface

Manceau et al. *Rev. Mineral. Geochem*. 2002, *49*, 341–428

Sorption is one of the most important processes affecting transport of contaminants in the environment.

Empirical distribution factor (K_d) Surface Complexation Modeling (SCM)

Approaches to scale up SCMs in complex systems

Component Additivity

Use of individual SCMs for pure minerals

Characterization of soil for mineralogy and parameters for each mineral required

Generalized Composite

Use of one or more generic surface sites to describe bulk soil

Calibration for each ligand required

UCONN

Competing requirements for SCM application in transport modeling

Proposed compromise

Surface structure

Ferrihydrite crystal structure (Hiemstra et al., 2013)

Nonprotonated

Protonated

UCONN

Based on ferrihydrite surface structure as proposed by Hiemstra (2013)

4 sites

- FeOH^a, LogK= 10.4 and 1.3 nm⁻²

- FeOH^b, LogK= 8 and 5.2 nm⁻²
 Fe₃O, LogK= 6.16 and 1.5 nm⁻²
 Fe₃O, LogK= 10.4 and 2.6 nm⁻²

Surface Complexes

Inner-sphere monodentate complex \equiv FeOH^{-0.5} + H⁺ +CrO₄²⁻ $\leftrightarrow \equiv$ FeOCrO₃^{-1.5} + H₂O

Inner-sphere bidentate complex $\equiv 2FeOH^{-0.5} + 2H^{+} + CrO_{4}^{2-} \leftrightarrow (\equiv FeO)_{2}CrO_{2}^{-1} + 2H_{2}O$

Model calibration utilizing ferrihydrite data

Carbonate adsorption modeling (lines) and data by Zachara et al. (1989) (squares). Carbonate complexation constant logK_{CO3} = 21.3 **UCONN**

Surface charge modeling (line) and titration data by Girvin et al. (1991) on ferrihydrite (open schemes) Basic Stern model fit with $C_s = 1.1$; $logK_{Na} = -0.7$; $logK_{NO3} = -0.9$

Complexation Reactions

<u>Surface Protonation reactions</u> ≡FeOH ^{-0.5} + H ⁺ \leftrightarrow ≡FeOH ₂ ^{0.5} ≡Fe ₃ O ^{-0.5} + H ⁺ \leftrightarrow ≡Fe ₃ OH ^{0.5}	LogKs 10.4 & 8.0 ^a 6.16 & 10.4 ^a
$\frac{Electrolyte-Surface Reactions}{= FeOH^{-0.5} + Na^{+} \leftrightarrow = FeOHNa^{+0.5}}$ $= FeOH^{-0.5} + H^{+} + Cl^{-} \leftrightarrow = FeOH_{2}Cl^{-0.5}$ $= FeOH^{-0.5} + H^{+} + NO_{3}^{-} \leftrightarrow = FeOH_{2}NO_{3}^{-0.5}$ $= FeOH^{-0.5} + H^{+} + ClO_{4}^{-} \leftrightarrow = FeOH_{2}ClO_{4}^{-0.5}$	-0.7 -0.45 ^b -0.9 -1.7 ^b
Inner-sphere Surface Complexation Reactions ≡FeOH ^{-0.5} + H ⁺ + CrO ₄ ²⁻ ↔ ≡FeOCrO ₃ ^{-1.5} + H ₂ O ≡2FeOH ^{-0.5} + 2H ⁺ + CrO ₄ ²⁻ ↔ (≡FeO) ₂ CrO ₂ ⁻¹ + 2H ₂ O ≡2FeOH ^{-0.5} + 2H ⁺ + CO ₃ ²⁻ ↔ (≡FeO) ₂ CO ₂ ⁻¹ + 2H ₂ O	11.2 18.4 21.3

^a Hiemstra 2013
^b Hiemstra and Van Riemsdijk, 1996

UCONN

Model Validation

Solid and initial Cr(VI) concentrations, SSA and ionic strength used as given in the respective study

Datasets used for the validation of the model:

<u>Cr(VI) on ferrihydrite</u>

- Benjamin et al., 1983
- Hsia et al., 2001
- This study

Cr(VI) on goethite

- Villalobos and Pérez-Gallegos, 2008
- VanGeen et al., 1994
- Mesuere and Fish, 2002

<u>Cr(VI) on hematite</u>

• Ajouyed et al., 2010

Cr (VI) on Ferrihydrite

Cr(VI) on Goethite

Data from Villalobos and Pérez-Gallegos (2008) and Van Geen et al. (1994)

Cr(VI) on Hematite

Inner - sphere species distribution

Conclusions

- The SCM based on FH surface structure described well enough the Cr(VI) adsorption on FH and GH.
- For HT, the model underestimated the adsorption at high pH.
- Inner sphere speciation in accordance with spectroscopic evidence.

Following steps for SCM in complex systems

Acknowledgments

NSF project 1404633

Collaborative Research: Toward a unified model for ferrihydrite nanoparticles behavior in the environment: a multipronged investigation of surface structure and reactivity

FEI fellowship in relation to the new UCONN FEI Center of Excellence in Microscopy (UFCEM) for "Investigating soil surfaces utilizing electron microscopy".

